
Theoret. Chim. Acta (Berl.) 56, 165-173 (1980) 

THEORETICA CHIMICA ACTA 

�9 by Springer-Verlag 1980 

Original Investigations 

Transition Functional Schemes for Molecular Transition 
Energies 

Barry Tennant  Pickup, David Warren Sabo 

Department of Chemistry, The University, Sheffield, $3 7HF, England 

David Firsht 

Department of Prices and Consumer Protection, Millbank Tower, Millbank, London S.W.1, England 

Two different transition functionals are used to calculate the first and second 
ionization potentials of water. The results compare favourably with more 
costly AEscF results. Methods of dealing with convergence problems are 
discussed. 

1. Introduction 

Interest in direct calculation of transition energies has been increased greatly by 
advances in various kinds of electron spectroscopies. At their most sophisticated 
level, direct methods for calculation of ionization potentials, excitation energies, 
transition energies arising out of Auger, shake-up, or shake-off processes, etc., 
involve field theoretic and many-body methods [1]. In principle, these methods 
allow calculation of the desired transition energies to arbitrary accuracy, subject 
only to the practical limitations imposed by available computing resources. 

A simpler direct method for calculation of transition energies, which involves only 
SCF theory, was proposed by Goscinski et al. [2]. This "transition opera tor"  
method was then generalized by Pickup et al. [3, 4]. The aim of this method is to 
mimic the result of separate SCF calculations for each of the initial and final states 
by a single SCF calculation using a suitably interpolated energy functional. The 
transition operator  method has now been used in calculations on atomic and 
molecular systems for a fairly wide class of transitions [4, 5]. 

One of the results of the generalization achieved in [3] was a realization that the 
interpolation of the energy functionals of two states of a system to obtain a 
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transition functional may be carried out in more  than one way [6]. In this paper,  
we present  the results of applying two different transition functional schemes to 
the calculation of a selection of molecular ionization potentials. The accuracy of 
these methods is demonstra ted by comparison with the corresponding AEscF 
results. Finally, we will make  some comments  about  computat ional  difficulties 
encountered in carrying out calculations for more  complicated transition pro- 
cesses. 

2. Basic Theory 

We are interested in approximate  representations of two states A and B, the 
energy functionals of which can be expressed in the form 1 , 

/~u = Y~ u~, tr/?~,h,g d<") (/~u), u = A or B (1) 
p 

where the "shell" density matrices:  

peEP 

are expressed in terms of the columns 2r(e ") of the molecular orbital expansion 
coefficients in the Roothaan  L C A O  formalism [8]. 

Not  every trial wavefunction gives rise to this kind of simple "density type"  energy 
functional. Nevertheless,  all pure spin wavefunctions derived from a single orbital 
configuration, regardless of the number  of open shells, have this proper ty  [21]. 
The only exceptions arise when spatial symmetry is imposed on a configuration 
with an incompletely filled degenerate  shell arising f rom a non-Abel ian point 
group. 

The additive shell energy matrices in Eq. (1) are 

h~U(") (/~ ~) = h +~Gp. (3) 

Here  h is the bare nucleus or core matrix. The two-electron interactions are 
represented by the expressions 

G~, = • [a~,od(i~ ~) + b~,og(R~)] (4) 
Q 

where Y and K are the usual Coulomb and exchange matrices [7]. The fractional 
occupation numbers,  v~, are a direct reflection of the orbital occupations for the 
state. The parameters  a~o and b~eo are determined by both the occupation 
scheme and the spin coupling in the corresponding states. 

Energy functionals of the form (1) can be made stationary with respect to 
orbital (or density matrix) variations using either the so-called coupling opera tor  

We distinguish trial functionals and densities with a tilde. The stationary quantities have the tilde 
removed. 
2 The energy functionals (1) are invariant against unitary transformations which mix orbitals in a 
single shell. These unitary symmetries can be said to define the shell structure. 
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formalism originally due to Roothaan [8], or using the effective Hamiltonian 
method of McWeeny [9, 10]. zXEscF transition energies are then calculated by 
subtraction of the separately optimized state energies. 

In the conventional transition functional approach [2, 4], however, one attempts 
to obtain the same information out of a single optimization of a linear energy 
interpolation functional of the form 

~'~~ = ( ~ + a ) ~  + (1 -a )~b .  (5) (x) 

Using perturbation theory, it can be shown that the orbitals which make the 
l ~ l i n  __ l ~ l i n  particular choice *~r -,~(o) stationary have special properties, and numerical 

experience shows they give very accurate estimates of the transition energy when 
compared with the AEscF method [3, 4]. The high accuracy obtained in practice 
using the linear energy interpolation formalism has been amply demonstrated for 
a variety of open shell systems [5]. 

It is natural to enquire whether the conventional interpolation scheme is uniquely 
useful. An obvious alternative to (5) is to interpolate only the numerical 
parameters u],, a~,o, and b~o, in the specification of the energy (1) of the two 
states. Thus, we can write 

al,o (A) = (1+ A )a ~o + (�89 a )a beo~. (6) 

bpo(a) = (�89 + (�89 a)b},o J 

When inserted into a general energy expression of the form of Eq. (1), these 
interpolated parameters define what will be called a non-linear energy inter- 
polation functional. The resulting transition energy expression is quadratic in A, 
rather than linear as in Eq. (5). That is, we have 

1~ . . . .  lin " . . . .  lin ~ /~ 2 ~ ' ~ E  
(x) = E T  q- A AE- t -  (7) 

~. . . . .  ~in = ~ . . . .  1~"(0), is not in general identical to where the transition functional, ,~r 
] ~ l i n  r .  The quantities appearing in (7) can be written as ~ 

= 2(E~ +/~b)-  4~7r. (8) 

Now, the stationary value of (7) depends upon 3, in two ways, firstly explicitly 
through the linear and quadratic dependence shown, and secondly implicitly 

3 These relations can be deduced by noticing that, in general 

/r =/r 

and 

[~(a)- ~(-a)] = 2aa~ 
[~7(X) + E ( - A ) ] -  2~7(0) = 2,~ 2A2/~ 
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because the stationary densities {Rp(A)} change with the energy functional as A is 
~ , n o n - l i n  varied. The stationarity of the energy functional ensures that variations in ~{x) 

from this latter source vanish�9 This statement is just the Hellman-Feynman 
theorem in Eq. (11) of [3] (q.v. for details), i.e. the total differential 

d ~ , n o n - l i n  ~ L T n o n - l i n  
~D (,X) _ OL" (X) 

- -  - AE + 2A 2A2E (9) 
dA OA 

where the symbol O/OA implies explicit differentiation, only, of Eq. (7) with 
respect to A. The exact AEscr energy difference is then 

f+1/2 4~7 lin . . . .  f+1/2 
Ea --Eb = ,~(~)  dh _ [AE({Rp(A)})  +2A2A2E({Rp(A)})]  dh 

a - l ~  2 dA a - l ~  2 

(10) 

A E  ({Rp (0)}) = Ea ({R T}) _ Eb ({R T}) (11) 

where the approximation inherent in (11) has the same status, in terms of 
�9 �9 r - . l i n  perturbation theory, as the transition approximation z : r  for the linear case. The 

non-linear estimate of AEscF energy difference is then obtained by finding the 
l T n o n - l i n  orbitals which make the functional ,~r  stationary, and with those orbitals, 

calculating AE as given in Eq. (11) above. This procedure is no more complicated 
than the original linear method. 

3. Application to a Configurationai Averaged Energy Functional 

Configurationally averaged many-shell SCF procedures [9] are often both con- 
venient and sufficiently accurate for calculating energies of open shell systems [ 11, 
18]. In such a case, the parameters appearing in Eq. (1) are given simply by, 

ve = he~me, (12) 

ape = u~ = 2 (np -  1) / (2rap-  1), 

avo = pp(P # O),  beo = - �89 O).  (13) 

Here, nv is the number of electrons in shell P, and me is the number of orbitals 
defining that shell. Using Eq. (13), it is easily shown that the interpolation scheme 
(6) is completely equivalent here to 

n e ( a ) =  1 ~ 1 b (~ + h )n e + (~ -  A )ne  (14) 

which is a direct interpolation of electronic occupation numbers specifying the 
states involved in the transition. 

The energy functional to be optimized can now be written as 

/~ . . . .  ,i. = t r  2 veT/~ d(T) (15) T P 

where 

~d(T) h I ' T  = + ~ a e  (16) 



Transition Functional Schemes for Molecular Transition Energies 169 

with 

~ T  vT'G(j~p)+ 2 v~G(l~o) (17) 
Q ( •  

G(R) = J(n)  - �89 

and 
//pT I a ~ ( v p + v ~ ) ,  v T = ~(Vp1" ,~+v,pb) (18) 

~ n o n - l i n  The first order variation of "~r produced by a variation in the transition 
density matrices {/~er}, is then, 

~ n o n - l i n  T ~ ~ T  SET = tr Y. (19) v pt~Rph p, 
P 

where/~ff is the transition Fock operator corresponding to shell P, and is given by, 

/~pr = h + t~ r (20) 

According to the effective Hamiltonian formalism of McWeeny [7], the orbitals 
~ n o n - l i n  which make "~T stationary (as well as satisfying the usual orthonormality 

constraints) are self-consistent eigenvectors of the matrix, 

~ n o n - l i n  
- voh  o ) R o  (21) 

P P,Q 

~ r ~ n o n - l i n  . . The sums in P and Q here are over all shells. The requirement that a n t  vanlsn 
in first order subjectto constraints is equivalent to the requirement that all of the 
matrix triple products in the second summation of (21) vanish. The numerical 
parameters bpo (damp factors) and the "diagonal part" matrices, dp, are not 
restricted in any way by the variational requirements. In practice, they generally 
have a marked effect on rates of convergence and the nature of the stationary 
solution to which the iterative calculation eventually converges [12]. At self- 
consistency, the effective operator (21) becomes 

] ~ n o n - l i n  T T 
r =Y~ (22) e pdpR p 

P 

Here, the tildes have been dropped from the density matrices, because they now 
correspond to a stationary value of the energy functional. 

Finally, we note one further simplification in the expression for the transition 
energy when a configurationally averaged energy functional is used. Using 
Eq. (12) and Eq. (13), the transition energy can be re-written as 

Ea({R~})-Eb({Rf,}): tr  Y.p(hpr + 2rap1-1 a(R~))Re(vpr ~ _ v~,) (23) 

where the P ' th  shell Fock matrix is given in Eq. (20) above. Thus, with the choice, 

dp = hpr4 1 a(l~e) (24) 
2rap -- 1 
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in (21), then at self-consistency, 

E~({R~})_Eb({R~,})=tr~ T dvRe(up-  Vbe) 
P 

= X ( u ~ -  be) X ep (25) 
P p e P  

L non-lin where the ep are the orbital energies (the eigenvalues of ,, T at self-consis- 
tency) corresponding to the pth eigenfunction of (21) in shell P, given Eq. (24). 
Thus, for this configurationally averaged energy functional, the transition energy 
may be calculated as a weighted sum of orbital energies, rather than by using the 
somewhat more complicated Eq. (11). Formulas like Eq. (25) can be written down 
for transitions between states with exact spin symmetry if their energy functionals 
satisfy the definitions in Eqs. (12) and (13). Examples of these are closed shell 
singlets, and doublet states arising out of configurations with one unpaired 
electron outside of a closed shell. Any pair of pure spin states which have SCF 
energy functionals of the form (1) can be treated using either the linear or 
non-linear methods, but the final energy difference will have to be calculated via 
Eq. (11) in general, rather than Eq. (25), since the reduction to (25) depends upon 
(12) and (13). 

4. Computational Example 

To illustrate the agreement between AEscr results and corresponding linear and 
non-linear interpolation results, a series of calculations were performed for the 
water molecule. A double zeta basis was used 4. The calculations were carried out 
using the procedures recommended in [12] with regard to choice of damp-factor 
signs. Convergence was assessed using the stationary conditions themselves rather 
than arbitrary quantities, such as steplengths. The diagonal factors were chosen to 
satisfy Koopmans' theorem for the various shells [ 12]. The results for the removal 
of a single electron from the ground state molecule are listed in Table 1, and those 
for the removal of two electrons from the same orbital are given in Table 2. In all 
cases, the initial state in the transition was taken to be the molecular ground state. 
Absolute errors in the linear and non-linear interpolation results compared with 
the AEscv results are also listed. While these absolute errors tend to increase 
somewhat as the transition energy increases, the relative error actually decreases 
rather markedly with increasing transition energy. Also, the discrepancy between 
the linear and non-linear results and the AEscF results are seen to be not 
significant in relation to the discrepancy between the AEscr results and experi- 
mental results. For the single electron ionizations, the non-linear method mimics 
the AEscF method marginally better than does the linear method, while for the 
two electron ionizations, the opposite is true. In either case, there is very little to 
choose between the two transition functional methods. 

4 The exponents for the l s  orbitals on the hydrogen atoms used were 1.33 and 2.47. Those for the 
oxygen atom were taken from Huzinaga, STO (4s, 2p) [13]. The geometry used for Roll  = 1.8111 a.u., 
0HOH = 104 ~ 27' (see Chong, [14]). 
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Table 1. (Energies in eV.) 

171 

Linear Non-linear 
Final state A E s c F  calculations calculations Exp. [16] 

1B* 11.443 11.521 (+0.078) 11.399 (-0.044) 12.6 
3A~* 13.226 13.384 (+0.158) 13.179 (-0.047) 14.7 
1B* 17.997 18.073 (+0.076) 17.961 (-0.036) 18.4 
2A* 35.066 35.164 (+0.098) 34.992 (-0.074) 32.2 
1A~* 539.964 540.343 (+0.379) 539.852 (-0.112) 539.7 

Comparison of linear and non-linear transition functional calculations with AEscv calculations for 
water molecule ionization potentials. Energies are in eV, and absolute errors (from AEscF) are quoted 
in brackets. 

Table 2. (Energies in eV.) 

Linear Non-linear 
Final state A E s c F  calculations calculations Exp.* 

1B** 40,416 40.110 (-0.306) 39.967 (-0.449) 41.1 
3A~** 44.087 43.815 (-0.272) 43.645 (-0.442) 45.9 
1B** 51.818 51.678 (-0.140) 51.432 (-0.386) 53.0 
2A** 88.372 88.228 (-0.144) 87.653 (-0.719) 88.9 
IA~** 1172.474 1173.120 (+0.646) 1170.917 (-1.557) --  

Calculations for water double IPs in eV. Absolute errors over AEscF are given in parentheses. 
* Values obtained from a poorly resolved auger spectrum [17] by subtracting the experimental value 
quoted for the 1A~IP in Table 1. These values are quoted merely as a rough guide. 

5. Practical Considerations and Discussion 

The linear and non-linear interpolation methods can also clearly be applied to the 
calculation of Auger, shake-up, and shake-off transition energies. As in AESCF 
calculations, though, it may not be at all straightforward to achieve a convergent 
iterative calculation to a particular state (or transition state). Since at least one 
(and possibly both) of the states involved in these calculations will not be the 
ground state of the system, such calculations generally involve an attempt to 
converge onto a saddle point on the SCF energy surface, rather than to some local 
or global minimum. It is therefore of great importance to ensure that the orbital 
mixings implied by the diagonalization of Eq. (21) or its equivalent produce 
energy variations of the appropriate sign. The fact that the functional being 
optimized is no longer necessarily to be minimized with respect to all variations is 
not a catastrophe, but it does mean that SCF programs cannot be used quite so 
much as black boxes for these calculations as they can be for many simple closed 
shell ground states. 

In the calculations reported above, the closed shell 2A** state gave the greatest 
convergence difficulty. General considerations of the iterative procedure [15] 
indicate that any configuration in which an unoccupied orbital is intermediate in 
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energy between two occupied orbitals of the same symmetry,  may well present 
serious convergence problems. Nevertheless, for the 2A** 4--G.S. process, the 
linear and non-linear interpolation calculations presented no particular 
difficulties. For other transitions, the SCF calculations converged more  easily than 
one or the other (or even both) of the transition functional calculations. 

The point is that while linear and non-linear interpolation calculations for a 
complicated electronic rear rangement  in a system may not converge easily, these 
same convergence problems are also experienced in the corresponding AEscF 
calculations. If a transition functional approach is used, it is necessary to achieve 
only a single convergent iterative calculation, rather  than two, as for AEscv 
calculations. As the results in Tables 1 and 2 amply demonstrate,  this doubling of 
computat ional  efficiency leaves the accuracy of the results virtually unaffected, for 
practical purposes. 

Subsequent practical experience, however,  indicates that convergence problems 
for many  calculations on excited states may be significantly reduced by trans- 
forming the integrals to an orthogonal basis. This has the effect of eliminating 
large components  f rom projections onto unoccupied spaces, which make many 
numerical algorithms for solving the stationary equations ill-conditioned. 
Improvement  in convergence is so dramatic for a wide number  of excited state 
calculations that many of the difficulties experienced in the above series could no 
doubt  have been reduced markedly were they to be repeated in this manner.  
However ,  in calculations involving large numbers  of basis functions, the cost of 
the transformation to an orthogonalized basis may be justified only if a large 
number  of SCF calculations are contemplated.  

It is well-known that AEscv methods fail to give accurate estimates of valence 
shell molecular ionization potentials [19], and fail to explain the inner-valence 
range even qualitatively. Nonetheless, AEscF is a commonly used procedure for 
all kinds of transition energy calculations, Transition operator  calculations have 
even formed the starting point for propagator  calculations of molecular IP's,  with 
impressive results [20]. 
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